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In the beginning there was Newton. His famous equations model the uni-
verse as a four-dimensional affine space A4 → A1 fibered over an affine
line, which is to be interpreted as time. The fibres are affine spaces
consisting of simultaneous events. The invariant notions in the New-
tonian universe are the time intervals and the euclidean distance between
simultaneous events and the relativity group which preserves them is
the galilean group, a ten-dimensional Lie subgroup of the affine group
Aff(A4) consisting of spatial rotations, translations in both space and time
and (galilean) boosts.

The unified description of electromagnetic phenomena was based on
the Maxwell’s equations, which unlike Newton’s equations, are not
galilean invariant. Departing from this fact, Einstein arrived at his
special theory of relativity, which Minkowski famously geometrised,

proposing his eponymous spacetime: a four-dimensional affine space A4 with an invariant notion of proper
distance between spacetime events. The Lie subgroup of Aff(A4) preserving the proper distance is the
Poincaré group and it too is a ten-dimensional Lie group consisting of rotations, spatio-temporal trans-
lations and (lorentzian) boosts. Special relativity famously posits that there is a maximum speed (that of
light), denoted c. The Newtonian universe can be understood as the c → ∞ limit of Minkowski spacetime.
In this limit, the Poincaré group contracts to the galilean group.

The galilean and Poincaré Lie groups are examples of kinematical Lie groups and they act transitively
on Minkowski spacetime and the newtonian universe, respectively. In other words, the spacetimes of both
Newton and Minkowski are homogeneous spaces of kinematical groups. Homogeneous spaces are the main
subjects of Felix Klein’s Erlangen programme, which proposes to study a geometry via its Lie group of
automorphisms.

Half a century ago, Bacry and Lévy-Leblond formulated the classification problem of homogeneous space-
times of kinematical Lie groups, launching what could be termed a kinematical Erlangen programme.
They introduced the notion of a kinematical Lie algebra and gave a classification in (spacetime) dimension
4 subject to some “by no means compelling” assumptions which were lifted twenty years later by Bacry and
Nuyts, completing the classification in that dimension. They observed that for every kinematical Lie algebra
k there is a Klein pair (k, h) suggesting the existence of an associated homogeneous spacetime. Nevertheless
they stopped short of showing that every such kinematical Klein pair had a geometric realisation.

Using deformation theory, I recently rederived the Bacry–Nuyts classification of kinematical Lie algebras
and extended it to arbitrary (spacetime) dimension — the three-dimensional case in collaboration with
Tomasz Andrzejewski. These classifications formed the basis of recent work with Stefan Prohazka where
we classified simply-connected kinematical Klein geometries in arbitrary dimension, refining and completing
the programme started by Bacry and Lévy-Leblond more than 50 years ago. Except for some exotic two-
dimensional spacetimes, all others fall into one of several classes, depending on which invariant structure they
possess: lorentzian, riemannian, galilean, carrollian or aristotelian. In our most recent work, arXived
shortly before arriving to Tromsø, Stefan Prohazka, Ross Grassie and I have continued the study of these
homogeneous geometries. We determined their invariant connections and their infinitesimal (conformal)
automorphisms, which in the galilean and carrollian cases are typically infinite-dimensional and reminiscent
of the famous BMS (Bondi–Metzner–Sachs) Lie algebra of asymptotic symmetries of asymptotically flat
spacetimes. In fact, I believe that this is not an accident and hope to explain this in a more general setting.

Kinematical Klein geometries include and generalise the maximally symmetric lorentzian manifolds, and
they are expected to play a similar starring rôle in our further understanding of holography and quantum
theories of gravity, to that which Minkowski and the de Sitter spacetimes have played in quantum field
theory and the gauge/gravity correspondence.


