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Fourier basis

 
 

The Fourier basis on an interval is a
basis of eigenfunctions of the operator

Lf = f ′′

We add the boundary condition
f (0) = f (l) = 0, then

fn = sin(πnx/`), Lfn = −λnfn,

λn = π2n2`−2.

fn has n − 1 zeros in the interval (0, l).



Dirichlet-Laplace eigenfunctions

We now consider a bounded domain Ω ⊂ Rd and the Laplacian

∆u(x) =
d∑

j=1

∂2
j u(x)

on the space of functions u vanishing on ∂Ω. Then∫
Ω
u∆u = −

∫
Ω
|∇u|2.

The operator −∆ has a discrete set of eigenvalues on this space,
0 < λ1 < λ2 ≤ λ3 ≤ ... and eigenfunctions φj such that

∆φj + λjφj = 0, φj = 0 on ∂Ω.
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Eigenfunctions surfaces and compact Riemannian
manifolds

l = 2, m = 0 l = 2, m = 1 l = 2, m = 2

l = 4, m = 0 l = 4, m = 2 l = 4, m = 4

l = 8, m = 0 l = 8, m = 4 l = 8, m = 8

On compact Riemannian manifolds:
we consider the eigenfunctions of
the Laplace-Beltrami operator ϕi :

∆ϕi = −λiϕ, 0 = λ1 < λ2 ≤ ....

Standard examples are the sphere,
where the eigenfunctions are the
restrictions of homogeneous
harmonic polynomials and the torus,
where the eigenfunctions are (some)
trigonometric polynomials.



Steklov eigenfunctions

Let Ω be a smooth bounded domain in Rd . We consider the
following problem:

∆u = 0 in Ω, ∂nu = σu on ∂Ω.

This problem also has a discrete spectrum 0 = σ1 < σ2 ≤ σ3 ≤ ....
These are eigenvalues of the (non-local) Dirichlet-to-Neumann
map.

For the case of Ω = B, the corresponding eigenfunctions are
homogeneous harmonic polynomials.
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Yau’s conjecture on zero set of eigenfunctions

Let φλ be an eigenfunction with eigenvalue λ. We consider its zero
set

Z (φλ) = {x : φλ(x) = 0}.

In the 1970s Yau conjectured that (for large λ)

c
√
λ ≤ Hd−1(Z (φλ)) ≤ C

√
λ.

The conjecture was proved in 1988 by Donnelly and Fefferman for
the case of real analytic manifold and a domain in Rd with real
analytic boundary. In 2017 Logunov proved the lower bound. The
upper bound is still open for general manifolds.
For the Steklov eigenfunctions the corresponding conjecture is that
for an eigenfunction uσ we have

cσ ≤ Hd−1(Z (uσ)) ≤ Cσ.

This is open. Partial results are due to Decio.



Yau’s conjecture on zero set of eigenfunctions

Let φλ be an eigenfunction with eigenvalue λ. We consider its zero
set

Z (φλ) = {x : φλ(x) = 0}.

In the 1970s Yau conjectured that (for large λ)

c
√
λ ≤ Hd−1(Z (φλ)) ≤ C

√
λ.

The conjecture was proved in 1988 by Donnelly and Fefferman for
the case of real analytic manifold and a domain in Rd with real
analytic boundary. In 2017 Logunov proved the lower bound. The
upper bound is still open for general manifolds.
For the Steklov eigenfunctions the corresponding conjecture is that
for an eigenfunction uσ we have

cσ ≤ Hd−1(Z (uσ)) ≤ Cσ.

This is open. Partial results are due to Decio.



Yau’s conjecture on zero set of eigenfunctions

Let φλ be an eigenfunction with eigenvalue λ. We consider its zero
set

Z (φλ) = {x : φλ(x) = 0}.

In the 1970s Yau conjectured that (for large λ)

c
√
λ ≤ Hd−1(Z (φλ)) ≤ C

√
λ.

The conjecture was proved in 1988 by Donnelly and Fefferman for
the case of real analytic manifold and a domain in Rd with real
analytic boundary. In 2017 Logunov proved the lower bound. The
upper bound is still open for general manifolds.

For the Steklov eigenfunctions the corresponding conjecture is that
for an eigenfunction uσ we have

cσ ≤ Hd−1(Z (uσ)) ≤ Cσ.

This is open. Partial results are due to Decio.



Yau’s conjecture on zero set of eigenfunctions

Let φλ be an eigenfunction with eigenvalue λ. We consider its zero
set

Z (φλ) = {x : φλ(x) = 0}.

In the 1970s Yau conjectured that (for large λ)

c
√
λ ≤ Hd−1(Z (φλ)) ≤ C

√
λ.

The conjecture was proved in 1988 by Donnelly and Fefferman for
the case of real analytic manifold and a domain in Rd with real
analytic boundary. In 2017 Logunov proved the lower bound. The
upper bound is still open for general manifolds.
For the Steklov eigenfunctions the corresponding conjecture is that
for an eigenfunction uσ we have

cσ ≤ Hd−1(Z (uσ)) ≤ Cσ.

This is open. Partial results are due to Decio.



Growth of Laplace eigenfunctions on compact manifolds

Donnelly and Fefferman proved the following growth estimate for
Laplace eigenfunctions on compact Riemannian manifolds:

∆φλ + λφλ = 0

For any geodesic ball Br (x)

max
B2r (x)

|φλ| ≤ exp(C
√
λ) max

Br (x)
|φλ|,

where r is assumed to be small enough.
In particular the vanishing order of an eigenfunction at any point of
Ω is bounded by C

√
λ. Similar result for Steklov eigenfunctions

was obtained by Zhu.

An eigenfunction corresponding to eigenvalue λ (σ) behaves as a
polynomial of degree

√
λ (σ).
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Bernstein’s and Markov inequalities for polynomials

Theorem (Bernstein)

If pn is a trigonometric polynomial of degree n then
maxT |p′n| ≤ nmaxT |pn|.

Theorem (Markov)

If Pn is an algebraic polynomial of degree n then
max[−1,1] |P ′n| ≤ n2 max[−1,1] |Pn|.

Markov’s inequality holds in higher dimensions. For harmonic
polynomials the result is better than for general algebraic
polynomials:

Theorem (Szegö (1940), Marzo (2007))

Let Hn be a harmonic polynomial of degree n in Rd

sup
B
|∇Hn| ≤ Cn sup

B
|Hn|

where B is the unit ball in Rd .
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Bernstein’s inequality for eigenfunctions

Let Ω be a smooth subdomain of Rd , there exists C = C (Ω) such
that for any eigenfunction φλ of the Laplace -Beltrami operator,
we have

sup
Ω
|∇φλ| ≤ C

√
λ sup

Ω
|φλ|.

Moreover, a similar inequality holds for linear combinations of
eigenfunctions.

Theorem (Filbir, Mhaskar, 2010)

Let φ =
∑

λj≤λ cjφλj then supΩ |∇φ| ≤ C
√
λ supΩ |φ|.



Markov’s inequality for eigenfunctions
Donnelly and Fefferman (1990) showed for any ball B(x , r) in Ω

‖∇φλ‖L2(B) ≤ Cλ1/2r−1‖φλ‖L2(B), and

‖∇φλ‖L∞(B) ≤ Cλ(d+2)/2r−1‖φλ‖L∞(B)

and conjectured that the coefficient in the last inequality can be
improved to Cλ1/2r−1.

Theorem (Decio, M, 2022)

There is C = C (Ω) such that for any eigenfunction φλ with
∆φλ + λφλ = 0 and any ball B(x , r) ⊂ Ω with r < Cλ−1/2 and
any δ > 0, we have

sup
B(x ,r)

|∇φλ| ≤ Cδ

√
λ(log λ)2+δ

r
sup

B(x ,r)
|φλ|.

Similarly, for Steklov eigenfunctions ∂nuσ = σu on ∂Ω, we have

sup
B(x ,r)

|∇uσ| ≤ Cδ
σ(log σ)2+δ

r
sup

B(x ,r)
|uσ|.
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From Laplace eigenfunctions to harmonic functions

∆φλ + λφλ = 0 vs ∆u = 0.

Let φλ satisfy ∆φλ + λφλ = 0 on Ω.

Old trick: define a harmonic function u on Ω× R by

u(x , t) = φλ(x) exp(
√
λt),

The following inequality for the doubling index holds for u,

log
maxB2r (x ,t) |u|
maxBr (x ,t) |u|

≤ C
√
λ,

for r < r0.
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Density of the zero set for Laplace eigenfunctions

Suppose that φλ is positive on a ball B(x , 2r) ⊂ Ω. Then the lifted
function u(x , t) is also positive in the corresponding ball
B̃((x , 0), 2r) ⊂ ω×R.

Apply the Harnack inequality for B̃(x , r) we
conclude

u(x) ≥ inf
B̃((x ,0),r)

u ≥ c sup
B̃((x ,0),r)

≥ cer
√
λu(x)

Thus r ≤ C1/
√
λ and the zero set of φλ is 2C1/

√
λ dense.

Surprisingly, for Steklov eigenfunctions the statement is wrong.
Recently Bruno and Galkowski showed that there is an analytic
domain Ω and a subdomain Ω1 on which a sequence of Stekolv
eigenfunctions does not vanish.
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The frequency function

div(A∇u) = 0, A is symmetric, elliptic and Lipschitz

For simplicity let A = I and define

Hu(x , r) = |∂Br |−1

∫
∂Br (x)

|u|2, Fu(x , r) =
rH ′(r)

H(r)
.

Fu is called the frequency function of u.

I If p is a homogeneous polynomial of degree m then
Fp(0, r) = 2m.

I limr→0 Fu(x , r) equals to (two times) the order of vanishing of
u at x .

I Doubling index versus frequency function

cFu(x , r)− C ≤ log
maxB(x ,2r) |u|
maxB(x ,r) |u|

≤ CFu(x , 4r) + C .



The frequency function

div(A∇u) = 0, A is symmetric, elliptic and Lipschitz

For simplicity let A = I and define

Hu(x , r) = |∂Br |−1

∫
∂Br (x)

|u|2, Fu(x , r) =
rH ′(r)

H(r)
.

Fu is called the frequency function of u.

I If p is a homogeneous polynomial of degree m then
Fp(0, r) = 2m.

I limr→0 Fu(x , r) equals to (two times) the order of vanishing of
u at x .

I Doubling index versus frequency function

cFu(x , r)− C ≤ log
maxB(x ,2r) |u|
maxB(x ,r) |u|

≤ CFu(x , 4r) + C .



The frequency function

div(A∇u) = 0, A is symmetric, elliptic and Lipschitz

For simplicity let A = I and define

Hu(x , r) = |∂Br |−1

∫
∂Br (x)

|u|2, Fu(x , r) =
rH ′(r)

H(r)
.

Fu is called the frequency function of u.

I If p is a homogeneous polynomial of degree m then
Fp(0, r) = 2m.

I limr→0 Fu(x , r) equals to (two times) the order of vanishing of
u at x .

I Doubling index versus frequency function

cFu(x , r)− C ≤ log
maxB(x ,2r) |u|
maxB(x ,r) |u|

≤ CFu(x , 4r) + C .



Monotonicity of the frequency function

Monotonicity of Almgen’s frequency function (Garofalo-Lin, 1986).

Hu(x , r) = |∂Br |−1

∫
∂Br (x)

|u|2, Fu(x , r) =
rH ′(r)

H(r)
.

If ∆u = 0 then Fu(x , r) is non-decreasing in r .
For more general elliptic equation Fu(x , r)ecr is non-decreasing.

I The monotonicity result implies the doubling property of the
measure |u|2.

I Using the doubling and the Caccioppoli inequality, one can
obtain the reverse Hölder inequality (RH) for |u|2.

I RH means that |u| ∈ A∞ and equivalently log |u| ∈ BMO.
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Markov’s inequality for eigenfunctions: scheme

Main steps of the proof:

I Harmonic polynomials of degree n:
supB(x ,r) |∇P| ≤ nr−1 supB(x ,r) |P|.

I Harmonic functions: supB(x ,r) |∇h| ≤ Nr−1 supB(x ,r) |h|,
where N = Nh(x , 2r).
Idea: approximate harmonic function in B(x , r) by a
polynomial of degree 5N.

I Steklov eigenfunctions and Dirichlet-Laplace eigenfunctions
using the lifting trick.

I Solutions to elliptic PDEs
supB(x ,r) |∇u| ≤ N(logN)2+δr−1 supB(x ,r) |h|, where
N = Nu(x ,R), r < R/N.
Idea: approximate a solution to elliptic equation by a solution
of elliptic equation with analytic coefficients with the same
boundary data, they have comparable frequencies!



Thank You for your attention
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