
Giulia Di Nunno

The complexity of risk measurement

NMM2024 – Elisabeth Stephansen lecture
Oslo, 12-13 September 2024

STORM –– Stochastics for Time-Space Risk Models
Funded by the Research Council of Norway, project no. 274410, and the University of Oslo



Risk and Ambiguity vs Uncertainty

Uncertainty1 is the general lack of sureness. Uncertainty is a status that can
be better (partially) understood thanks to the analysis of the chaotic situation.

Risk is defined as a quantifiable uncertainty. Typically the potential outcomes
can be described in a set of scenarios in which a probability measure is
given. The study of risks reduces the uncertainty into risk management,
thanks to risk measures.

Ambiguity is the context in which the scenarios are known, but no referent
probability is possible to be identified precisely. In this case, risk analysis
needs to be coupled with some form of robustness.

1
Knight (1921), Ellsberg (1961),... Riedel (2019,2021).
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Past, present, future and information

In time dynamics,

the future scenarios are represented by (Ω,F ,P).

The information flow builds up in time F = (Ft )t≥0 with Fs ⊆ Ft , for
s ≤ t .

For all t , Xt represents Ft -random variables.
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Static risk measures

A static risk measure is a mapping

ρ : XT −→ X0 (= R)

with some properties:

1 monotone: if X ≤ Y , then ρ(X ) ≥ ρ(Y )

2 translation invariant: if m ∈ X0, then ρ(X + m) = ρ(X )−m

3 normalized: ρ(0) = 0

4 positive homogeneous: for λ >0, then ρ(λX ) = λρ(X )

5 sub-additive: ρ(X + Y ) ≤ ρ(X ) + ρ(Y )

6 convex: for λ ∈ [0,1], then ρ
(
λX + (1− λ)Y

)
≤ λρ(X ) + (1− λ)ρ(Y )

7 law invariant: if L(X ) = L(Y ), then ρ(X ) = ρ(Y )

A monetary evaluation of an admissible risk: ρ(X ) = inf{m : m + X ∈ A}.
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Some notable cases of large use2

Value-at-Risk α ∈ (0,1):

VaRα(X ) = −q+
α = −inf{x : FX (x) >α}

VaR is monotone, translation invariant, normalised, positive
homogeneous, but not sub-additive (hence VaR penalises
diversification). Also, no magnitude.

Conditional/average VaR (expected shortfall) α ∈ (0,1):

CVaRα =
1

1− α

∫ 1

α
Varu(X )du

This is a coherent risk measure.

Entropic risk measure θ >0:

ρθ(X ) =
1
θ log E

[
eθX
]

= sup
Q∈M1

{
EQ
[
X
]
− 1
θH(Q|P)

}
relative entropy H(Q|P) := E

[ dQ
dP log dQ

dP

]
. Convex, but not coherent

2
Banking - Basil I, II, III regulatory framework for risk management now with credit, market, and operational risk.

Insurance and reinsurance - Solvency I, II prudential regime framework
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Dynamic risk measures

Dealing with phenomena in time, also risk assessment has to follow.

A dynamic risk measure is a family of individual risk measures (ρt )0≤t≤T :

ρt : XT −→ Xt

Note: Convex risk measures have a convex dual representation, which opens
connection with convex analysis.
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Dynamic risk measures and BSDEs

Considering the future uncertainty be of Gaussian nature, then Brownian
motion can be taken as noise. The information flow is associated to the noise.
The random variables have moments, Lp(P) spaces.

Characterisation of rm in terms of BSDEs.3 Dynamic risk measures are
associated to BSDEs (= Backward Stochastic Differential Equations):

Yt = X +

∫ T

t
g(s,Ys ,Zs) ds −

∫ T

t
Zs dBs

The process (Yt )t in the solution (Yt ,Zt )t∈[0,T ] is regarded as an operator
depending on the driver g and evaluated at X ∈ L2(FT ), which turns out to
represent the nonlinear expectations

Eg(X |Ft ) = Yt , X ∈ L2(FT ), t ∈ [0,T ].

Depending on the properties of g, we have ρt (X ) = Eg(−X |Ft ).

3
Peng (1997, 2003), Frittelli, Rosazza Gianin (2002, 2004), Rosazza Gianin (2006), ...
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The properties of the driver g characterise the properties of (Yt )t .
For instance,

When the driver is assumed Lipschitz, we have guarantee of
existence and the unicity of the solution.

Beyond this case (e.g. quadratic), one can study concepts of
"maximal solutions"4.

If g(t ,0,0) = 0, then normalisation is guaranteed.

Properties of convexity of g in the couple (y , z) provide convex
solutions.

When g does not depend on Y , then the Ft -translation invariance is
satisfied5

Other notices of interest

Having some dynamics, we wish to consider numerical computation
techniques (...)

The future may not be Gaussian, other family of noises considered6

4
Kobilanski (2000) and also Barrieu and El Karoui (2009

5
Barrieu and El Karoui (2009), Jiang (2008).

6
Royer (2006), Quenez, Sulem (2013), Laeven, Stadje(2014, DiNunno, Sjursen (2014), Sulem, Øksendal (2019),...
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Dynamic risk meas: time consistency?

Dealing with phenomena in time, also risk assessment has to follow.

We take different times of evaluation: r ≤ s ≤ T

Order time-consistency: For X ,Y ∈ XT ,

ρs(X ) = ρs(Y ) =⇒ ρr (X ) = ρr (Y ).

Strong time-consistency: For X ∈ XT ,

ρr (X ) = ρr (−ρs(X )).

Careful!!
Static risk measures with different time-zones are time-inconsistent7.

Result:
If a dynamic risk meas. is normalised, then the two concepts are equivalent.

7
Examples by Artzner, Cheredito, Delaben, Föllmer, Cohen, Stadje ’06-10. Modification and study of order time consistency:

Bion-Nadal, Detlefsen, Scandolo, Delbaen, Bielechi, Cialenko ’08-’10
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Horizon and time-consistency, problems?

Let’s go deeper into "strong time-consistency"

Then horizon risk emerges connected to the use of the wrong risk measure
for the targeted horizon.
We then introduce the concepts of fully dynamic risk meas. and
the restriction property, and we quantify horizon risk by the horizon-longevity 8

8
Bion-Nadal, DiNunno (2020), DiNunno, Rosazza Gianin (2024)
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Fully-dynamic risk measures
Fully-dynamic (convex) risk measure9 is a family (ρst )s,t of risk measures :

ρst : Xt −→ Xs

In many applications, we consider each of the risk meas. satisfying

monotonicity, convexity

Fs-translation invariance or cash additivity , i.e. for X ∈ Lp(Ft ),

ρst (X + m) = ρst (X )−m, for all m ∈ Lp(Fs)

The acceptance set of ρst is defined as Ast , {Z ∈ Xt : ρst (Z ) ≤ 0 P-a.s.}.
Considering the setup of random variables with moments Lp(P), then each
risk measure admits the dual representation

ρst (X ) = ess max
Q∈Qst

{EQ[−X |Fs]− αst (Q)}

here αst is minimal penalty and Qst =
{

Q on Ft : Q � P and Q|Fs ≡ P|Fs

}
.

9
Bion-Nadal, DiNunno (2020)
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Comments
• We do not assume a priori that the risk measures ρst are normalised, i.e.

ρst (0) = 0, for all s ≤ t ,

• We do not assume that the risk measures have the restriction property,
i.e.

ρrs(Y ) = ρr t (Y ), for all Y ∈ Lp(Fs), r ≤ s ≤ t

Remark: relationship with dynamic risk measures
A fully-dynamic risk measure with restriction property corresponds
one-to-one with a dynamic risk measure:

ρr (Y ) = ρrT (Y ) = ρrs(Y ), for all Y ∈ Lp(Fs), r ≤ s ≤ T .
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(ρst)s,t and time-consistency
Going back to the analysis of time-consistency, we now have

Definition. A fully-dynamic risk measure (ρst )s,t is

order time-consistent if for r ≤ s ≤ t , X ,Y ∈ Xt ,
we have

ρst (X ) = ρst (Y ) =⇒ ρr t (X ) = ρr t (Y ).

weak time-consistent, if for r ≤ s ≤ t , X ∈ Xt ,

ρr t (X ) = ρr t (ρst (0)− ρst (X ))

recursive if for r ≤ s ≤ t , we have

ρr t (X ) = ρrs(−ρst (X )), X ∈ Xt ,

See Acciaio, Penner (2011), Bielecki, Cialenco, Pitera (2017), Bion-Nadal (2009),...
Weak time consistency appeared in Bion-Nadal, DiNunno (2020) in relation to risk indifference prices.
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About recursive time-consistency

• Recursivity is a “composition rule”.

• Recursivity is not transferred via normalisation.
If (ρst )s,t is strong time consistent, then its normalised version

ρ̄st (X ) := ρst (X )− ρst (0), X ∈ Xt , s ≤ t ,

may not be.
Indeed, the values ρrt (0), ρrs(0), and ρst (0) are potentially different.

Remark
A normalised fully-dynamic risk measure ρ̄st (X ) := ρst (X )− ρst (0), is
recursive if and only if

ρrt (0) = ρrs(0) + EQ
[
ρst (0)|Fr

]
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About order time-consistency

• Order time-consistency is transferred to the normalised fully-dynamic risk
measures.

Proposition. The following statements are equivalent:

i) (ρst )s,t is recursive.

ii) (ρst )s,t is order time-consistent and

ρrt (Y ) = ρrs(Y − ρst (0)), 0 ≤ r ≤ s ≤ t , Y ∈ Xs.

Corollary. If the fully-dynamic risk measure is normalised, then we have the
equivalence:

i) (ρst )s,t is recursive

ii) (ρst )s,t is order time-consistent and the restriction property holds.

Corollary for dynamic risk measures. If (ρs)s is normalised, then the following two are equivalent:

i) order time-consistency

ii) ρr (X) = ρr (−ρs(X)), X ∈ Lp(Ft ),
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About weak time-consistency

Proposition. For fully-dynamic risk measures we have equivalence

i) weak time-consistency

ii) order time-consistent.

(Here cash additivity is crucial!)

Remark: Under both normalisation and restriction, all the three concepts
coincide.

Side note: We can characterise the concepts in terms of minimal penalties in
the dual representation.
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About weak time-consistency

Proposition. For fully-dynamic risk measures we have equivalence

i) weak time-consistency

ii) order time-consistent.

(Here cash additivity is crucial!)

Remark: Under both normalisation and restriction, all the three concepts
coincide.

Side note: We can characterise the concepts in terms of minimal penalties in
the dual representation.

Take home message:
Normalisation and restriction are crucial characteristics in dynamic
risk-evaluation.
Assuming these becomes a modelling choice, which should not be
underestimated!
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Horizon risk and H-longevity

Once we drop restriction, to allow for the evaluation of horizon risk, we
introduce h-longevity as a kind of penalisation for using a risk measure
non-appropriate for the time window.

Definition. Horizon longevity or h-longevity is

γ(s, t ,u,X ) := ρsu(X )− ρst (X ) ≥ 0

for any 0 ≤ t ≤ u,X ∈ Xt .

Proposition (acceptance sets). For a fully-dynamic risk measure (ρst )s,t :

(a) H-longevity is equivalent to Asu ∩ Xt ⊆ Ast for any s ≤ t ≤ u.
(b) Restriction is equivalent to Asu ∩ Xt = Ast for any s ≤ t ≤ u.
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(ρst)s,t generated by one BSDE
Focus on L2(P)-spaces and a d-dimensional Brownian noise (Bt )t .
The process (Ys)s of the solution (Ys ,Zs)s∈[0,t] to the BSDE

Ys = X +

∫ t

s
g(r ,Zr ) dr −

∫ t

s
Zr dBr = Eg(X |Fs)

with a convex driver g not depending on y , represents the nonlinear
expectation and the risk measure:

ρst (X ) = Eg(−X |Fs), X ∈ L2(Ft ).

Proposition. The following properties are equivalent:

g(t ,0) = 0 for any t ∈ [0,T ];

each ρst is normalised

(ρst )s,t satisfies the restriction property

Hence, (ρst )s,t generated from the BSDE with g(t ,0) = 0 are recursive.
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The quantification of h-longevity can be retrieved.

Proposition. If g(v ,0) ≥ 0 for any v , then h-longevity holds. Furthermore,

γ(s, t ,u,X ) = EQ̃X

[∫ u

t
g(v ,0)dv |Fs

]
,

where Q̃X ∼ P is a suitable probability measure depending on X .
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(ρst)s,t generated by a family of BSDEs
To give even more emphasis to the time horizon, we induce risk measures
from a family of BSDEs with convex drivers G = (gt )t ,depending on the time
horizon t in the form

Ys = X +

∫ t

s
gt (r ,Zr ) dr −

∫ t

s
Zr dBr

Then we have ρst (X ) = ρGst (X ) = Egt (−X |Fs), for any X ∈ L2(Ft ).

NB: If, for all t , gt (r ,0) = 0 for any r , then ρGst is normalised. However, this
does NOT imply the restriction property.

Proposition
Whenever gt (r ,0) = 0, for any r , t , with gt (r , ·) be continuous in r .
The restriction property holds if and only if gt is constant in u
(i.e. back to a single BSDE!).
Example. Consider the driver gt(r , z) ≡ at ∈ R \ {0}. Then

ρst (X) = EP [−X | Fs ] + (t − s)at .

(ρst )s,t is NOT normalised and does NOT satisfy the restriction property.
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When it comes to h-longevity, we have the following result.

Proposition

i) If G is increasing and ρtu(0) ≥ 0 for any t ≤ u, then (ρtu)t ,u satisfies
h-longevity.

ii) If G is increasing and gt ≥ 0 for any t ∈ [0,T ], then (ρtu)t ,u satisfies
h-longevity.

In fact, this result relies on
Theorem: comparison of BSDEs on different horizons [0,T1] ⊂ [0,T2]
Consider two BSDEs:

Y Ti
s = ξi +

∫ Ti

s
gTi (r ,Y Ti

r ,Z Ti
r )dr −

∫ Ti

s
Z Ti

r dBr .

We obtain that Y T2
s ≥ Y T1

s for any s ∈ [0,T1] and Y T2
s ≥ ξ1 for any s ∈ [T1,T2],

whenever

gT2 (r , y , z) ≥ gT1 (r , y , z) for any r ∈ [0,T1], y , z
gT2 (r , y , z) ≥ 0 for any r ∈ [T1,T2], y , z
ξ2 ≥ ξ1.
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Examples
(a) Consider now the driver gt (r , z) = bz + at with at ,b ∈ R \ {0} and at
depending on the maturity t .
It follows that

ρst (X ) = EQ [−X | Fs] + (t − s)at ,
where EP

[ dQ
dP

∣∣Ft
]

= exp
{
− 1

2 b2t + b · Bt
}

. For at 6= 0, (ρst )s,t is NOT
normalised and does NOT satisfy the restriction property. Instead, it satisfies
H-longevity whenever at >0 is increasing in t .

b) Entropic type risk measures (quadratic BSDEs)
In the one-dimensional case, consider

Ys = −X +

∫ t

s

[
bt

Z 2
r

2
+ at

]
dr −

∫ t

s
Zr dBr

with bt and at positive functions. Then we have

ρst (X ) =
1
bt

ln
(

EP
[

exp(−btX )| Fs
])

+

∫ t

s
at (r)dr .

Hence, (ρst )s,t is NOT normalized and does NOT satisfy the restriction
property. Instead, it satisfies h-longevity whenever (at )t and (bt )t are
increasing in t .
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D-tour: (ρst)s,t generated by BSVIE
Exploration on the use of BSVIE10 to generate fully dynamic risk measures11.
We consider

Ys = X +

∫ T

s
g(s, r ,Z (s, r)) dr −

∫ T

s
Z (s, r) dBr ,

where the driver is
g : Ω×∆× [0,T ]× Rd → R

with ∆ , {(s, r) ∈ [0,T ]× [0,T ] : s ≤ r}

Relationship with a family of BSDEs (parametrised by v ):

η(s; v ,X ) =X +

∫ T

s
g(v , r ,Z (v , r)) dr −

∫ T

s
Z (v , r) dBr , v ∈ [s,T ]

then Ys = η(s; s,X )

10
See Yong (2007)

11
See DiNunno, Rosazza Gianin (2024) with convex representation and converse comparison theorems
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Proposition: h-longevity.
If g(s, v ,0) ≥ 0 for any s ≤ v , then longevity holds.
Furthermore,

γ(s, t ,u,X ) = EQ̃s,X

[∫ u

t
g(s, v ,0)dv

∣∣∣Fs

]
, s ≤ t ≤ u,

where Q̃s,X∼P is a suitable probability measure depending on X .

Example revisited: Entropic type risk measures.

Consider

Ys = −X +

∫ T

s
a(s, r)dr +

∫ T

s
b(s)

(Z (s, r))2

2
dr −

∫ T

s
Z (s, r)dBQ̃s

r

with positive deterministic functions b and a.
Then

Ys =
1

b(s)
ln EP

[
e−b(s)X

∣∣∣Fs

]
+

∫ T

s
a(s, r)dr ,

that is a translation of the usual entropic risk measure.
Choosing a(s, r) >0, there is h-longevity.
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LONG horizons, money, interest rates
The value of money varies over long time horizons, then we also have
uncertainty on interest rates.

The combination of both longevity and interest rates, we enter the domain of
cash non-additive risk measure.

Quantities expressed in unit of money and et is the unit of money at time t .
Hence a financial investment available at time t is denoted X et , where X
represents the size of the investment.

Let (Dst )0≤s≤t≤T be the family of discount factors Dst on the time interval
(s, t ]:

0 <dst ≤ Dst et ≤ 1.
The unit of measurement for Dst is 1/ et .
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For any cash additive fully-dynamic risk measure (φst )0≤s≤t≤T we define

ρst (X ) , φst (DstX et ), X ∈ Lp(Ft ).

Indeed, ρst is cash subadditive. For any X ∈ Lp(Ft ) and m ∈ Lp
+(Fs), we have

ρst (X + m) = φst (Dst (X + m)et )

≥ φst (DstX et +met ) = φst (DstX et )−m
= ρst (X )−m,

thanks to monotonicity.

Another cash subaddtive risk measure generated by the ambiguity of the
interest rates is given by:

Rst (X ) , ess sup
0<dst≤Dst et≤1

φst (DstX et )

In the framework of cash non-additive risk measures we can study
h-longevity, normalisation, and time-consistency.
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Cash non-additive (ρst)s,t and BSDE
In a dynamic setting, we can generate cash non-additive risk measures from
BSDEs with explicit dependence on Y in the driver:

Yt = X +

∫ u

t
g(s,Ys ,Zs) ds −

∫ u

t
Zs dBs

In particular we have that:

if g(s, y , z) is decreasing in y for all (s, z), then the risk measure
generated ρtu is cash sub-additive12.

Proposition.

ρtu is normalised if and only if g(t ,0,0) = 0 for all t .

ρtu is restricted (and normalised) if and only if g(t , y ,0) = 0 for all t , y .

12
See El Karoui, Ravanelli 2009)
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Cash non-additive (ρst)s,t and BSDE
Proposition.
a) recursivity implies oder time-consistency.
b) Weak time-consistency implies order time-consistency.
c) Under (normalization and) restriction: recursive is equivalent to weak
time-consistency.

N.B. Order time-consistency does not imply weak time-consistency!

Example. Consider

ρtu(X ) = EP
[
− e−r(u−t)X

∣∣Ft
]
, X ∈ LP(Fu),

with r >0. Then (ρtu)t ,u is a cash subadditive and normalized fully-dynamic
risk measure that satisfies recursive and order time-consistency.
Nevertheless, weak time-consistency does not hold. In fact,

ρsu(ρtu(0)− ρtu(X )) = ρsu(−ρtu(X ))

= e−r(u−t)ρsu(X ) 6= ρsu(X ).
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Cash non-additive (ρst)s,t and h-longevity

Proposition.
H-longevity holds if and only if g(t , y ,0) ≥ 0 for any t , y . Furthermore, for
s,u ∈ [0,T ] with s ≤ u, we have

γ(s, t ,u,X ) = EQ̃X

[
e
∫ u

s ∆y g(v)dv
∫ u

t
g(v ,−X ,0)dv |Fs

]
, s ≤ t ≤ u,X ∈ Lp(Ft ),

where Q̃X ∼ P is a suitable probability measure depending on X .
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Example: q-entropic risk measures
Here we are driven by considerations on capital requirements on potential
losses in long term horizons.

Yt = −X +

∫ u

t

[
q
2

Z 2
s

1 + (1− q)Ys
+ a(s)

]
ds −

∫ T

t
ZsdBs

The solution of such BSDE is

Yt = lnq E
[

expq

(
− X +

∫ u

t
a(s)ds

)∣∣∣Ft

]
given in terms of the generalised q-exponential and q-logarithmic functions,

for q >1 or q ∈ (0,1):

expq(x) = [1− (1− q)x ]
1

1−q lnq(x) =
x1−q − 1

1− q

with split domain depending on q:{
q ∈ (0,1), Dom(expq) : x ≥ − 1

1−q ; Dom(lnq) : x ≥ 0
q >1, Dom(expq) : x <− 1

1−q ; Dom(lnq) : x >0
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q-entropic measure on losses

Call (φtu)t ,u the solution of the BSDE above in the case q ∈ (0,1):

φtu(X ) = Yt .
Then we can defined:

ρq,a
tu (X ) , φtu

(
− (X + β)+

)
, X ∈ L2(Fu),

where β represents a level of acceptable loss. Then

ρq,a
tu (X ) = lnq EP

[
expq

(
(X + β)− +

∫ u

t
a(s)ds

)∣∣∣∣Ft

]
,

This risk measure is convex, cash subadditive, not normalised, not restricted,
and there is h-longevity whenever a(s) >0.

Proposition (comparison among entropics) Take a ≡ 0. For any
X ∈ L2(Fu), β ∈ R, the q-entropic risk measure on losses ρq

tu is increasing in
q with

EP [−(X + β)−|Ft ] = ρ0
tu(X ) ≤ ρq

tu(X ) ≤ ρ1
tu(X ) = ρentr

tu (−(X + β)−).

Giulia Di Nunno 31 / 36



Summing up

Dynamic risk measurement needs time consistency in
evaluation time and this implies modelling needs and it is
treated accordingly (see normalisation and restriction)
It also requires that time scales are considered to avoid horizon
risk, this is also a modelling need, which requires specific
attention
when horizon are long, other elements can come into play in
the robustness of the model, coordination with other
uncertainties (see example of interest rates)

A word about numerics ....
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Numerical methods
Numerics for BSDEs often does not consider without risk evaluation:
assumptions are too strong, e.g., no methods for quadratic case and
unbounded risks.

Computationally, there is a different between computing

1 ρst (X ) for a given X and
2 ρst (·).

Here, note that X is often the forward S(P)DE of a phenomena:

dXt = β(t ,Xt )dt + σ(t ,Xt )dBt

Case (i) is typically dealt with Forward-Backward SDEs in a system.

An operator valued argument to obtain (ii) is based on Wiener-chaos
expansions coupled with more classical numerical methods for
BSDEs. We obtain the Operator Euler Scheme for BSDEs13.

13DiNunno, Diaz (2024+)
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Example: barrier options
Potential risk: X (K ,L) := (ST − K )+1{Sti≥L ∀i∈{0,...,n}}, where S follows a
Black-Scholes diffusion

St = s0e(μ−(1/2)σ2)t+σBt , ∀t ∈ [0,T ].

dynamic risk measure: with driver g(t , y , z) = −ry − z(μ− r)/σ
range: K ∈ [0.8,1.2],L = 0.85 and L ∈ [0.6,1],K = 0.95
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Example: asian option
Potential risk: ξ(K ) :=

(∑n−1
i=0 ∆tiSti − K )+.

Dynamic risk measure:

g(t , y , z) = −ry − μ− r
σ z + (R − r)

(
y − z

σ
)
−.

range: K ∈ [0.7,1.35]
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